All Issue

2020 Vol.40, Issue 6 Preview Page

Research Article

30 December 2020. pp. 135-149
Abstract
References
1
Soares, N., Bastos, J., Pereira, L. D., Soares, A., Amaral, A. R., Asadi, E., Rodrigues, E., Lamas, F. B., Monteiro, H., Lopes, M. A. R., and Gaspar, A. R., A Review on Current Advances in the Energy and Environmental Performance of Buildings Towards a More Sustainable Built Environment, Renewable and Sustainable Energy Reviews, Vol. 77, pp.845-860, 2017. 10.1016/j.rser.2017.04.027
2
Despotovic, M., Nedic, V., Despotovic, D., and Cvetanovic, S., Evaluation of Empirical Models for Predicting Monthly Mean Horizontal Diffuse Solar Radiation, Renewable and Sustainable Energy Reviews, Vol. 56, pp. 246-260, 2016. 10.1016/j.rser.2015.11.058
3
Kolokotsa, D. E. K. D., Rovas, D., Kosmatopoulos, E., and Kalaitzakis, K., A Roadmap Towards Intelligent Net Zero-and Positive-energy Buildings, Solar Energy, Vol. 85, No. 12, pp. 3067-3084, 2011. 10.1016/j.solener.2010.09.001
4
Mohanty, S., Patra, P. K., and Sahoo, S. S., Prediction and Application of Solar Radiation with Soft Computing over Traditional and Conventional Approach-A Comprehensive Review, Renewable and Sustainable Energy Reviews, Vol. 56, pp. 778-796, 2016. 10.1016/j.rser.2015.11.078
5
Crawley, D. B. and Huang, Y. J., Does It Matter Which Weather Data You Use in Energy Simulations, User News, Vol. 18, No. 1, pp. 2-12, 1997.
6
Janjai, S. and Deeyai, P., Comparison of Methods for Generating Typical Meteoro-logical Year Using Meteorological Data from a Tropical Environment, Applied Energy, Vol. 86. pp. 528-537, 2009. 10.1016/j.apenergy.2008.08.008
7
ISO, EN ISO 15927-4:2005, Hygrothermal Performance of Buildings e Calculations and Presentation of Climatic Data e Part 4: Hourly Data for Assessing the Annual Energy Use for Heating and Cooling, European Committee for Standardization, 2005.
8
Moazami, A., Nik, V. M., Carlucci, S., and Geving, S., Impacts of Future Weather Data Typology on Building Energy Performance-Investigating Long-term Patterns of Climate Change and Extreme Weather Conditions, Applied Energy, Vol. 238, pp. 696-720, 2019. 10.1016/j.apenergy.2019.01.085
9
Hee, W. J., Alghoul, M. A., Bakhtyar, B., Elayeb, O., Shameri, M. A., Alrubaih, M. S., and Sopian, K., The Role of Window Glazing on Daylighting and Energy Saving in Buildings, Renewable and Sustainable Energy Reviews, Vol. 42, pp. 323-343, 2015. 10.1016/j.rser.2014.09.020
10
Hall, I., Prairie, R., Anderson, H., and Boes, E., Generation of Typical Meteorological Years for 26 SOLMET Stations, Rapport technique SAND78-1601, Sandia National Lab., Albuquerque, 1978.
11
Lund, H. and Eidorff, S., Selection methods for production of Test Reference Years, Report no EUR 7306 EN., Tech. Univ. Denmark, Dept. of Buildings and Energy, 1985.
12
Chan, A. L., Chow, T. T., Fong, S. K., and Lin, J. Z., 2006. Generation of a Typical Meteorological Year for Hong Kong, Energy Conversion and management, Vol. 47, No. 1, pp.87-96. 10.1016/j.enconman.2005.02.010
13
Lee, K., Yoo, H., and Levermore, G. J., Generation of Typical Weather Data Using the ISO Test Reference Year (TRY) Method for Major Cities of South Korea, Building and Environment, Vol. 45, No. 4, pp.956-963, 2010. 10.1016/j.buildenv.2009.10.002
14
Kim, Y., Jang, H. K., and Yu, K. H., Study on Extension of Standard Meteorological Data for Cities in South Korea Using ISO 15927-4, Atmosphere, Vol. 8, No. 11, p.220, 2017. 10.3390/atmos8110220
15
Jee, J. B., Lee, S. W., Choi, Y. J., and Lee, K. T., The Generation of Typical Meteorological Year for Research of the Solar Energy on the Korean Peninsula, New & Renewable Energy, Vol. 8, No. 2, pp.14-23, 2012. 10.7849/ksnre.2012.8.2.014
16
Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., and Fagbenle, R. O., Generation of a Typical Meteorological Year for North-East, Nigeria, Applied Energy, Vol. 112, pp.152-159, 2013. 10.1016/j.apenergy.2013.05.072
17
Argiriou, A., Lykoudis, S., Kontoyiannidis, S., Balaras, C. A., Asimakopoulos, A., Petrakis, M., and Kassomenos, P., Comparison of Methodologies for TMY Generation Using 20 Years Data for Athens, Greece, Sol Energy, Vol. 66, No. 1, pp. 33-45, 1999. 10.1016/S0038-092X(99)00012-2
18
Pattarapanitchai, S., Tohsing, K., Pankaew, P., and Janjai, S., Generation of Typical Meteorological Year Data Sets for 20 Stations in Thailand. In 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), IEEE, pp. 1-6, March 2014.
19
Yilmaz, S. and Ekmekci, I., The Generation of Typical Meteorological Year and Climatic Database of Turkey for the Energy Analysis of Buildings, Journal of Environmental Science and Engineering A, Vol. 6, pp. 370-376, 2017. 10.17265/2162-5298/2017.07.005
20
Skeiker, K., Comparison of Methodologies for TMY Generation Using 10 Years Data for Damascus, Syria, Energy Conversion and Management, Vol. 48, No. 7, pp. 2090-2102, 2007. 10.1016/j.enconman.2006.12.014
21
Rahman, I. A. and Dewsbury, J., Selection of Typical Weather Data (Test Reference Years) for Subang, Malaysia, Building and Environment, Vol. 42, No. 10, pp. 3636-3641, 2007. 10.1016/j.buildenv.2006.10.004
22
De Miguel, A. and Bilbao, J., Test Reference Year Generation from Meteorological and Simulated Solar Radiation Data, Solar Energy, Vol. 78, No. 6, pp. 695-703, 2005. 10.1016/j.solener.2004.09.015
23
Zhang, Q. and Huang, J., Chinese Typical Year Weather Data for Architectural Use, 2004.
24
Pusat, S., Ekmekçi, İ., and Akkoyunlu, M. T., Generation of Typical Meteorological Year for Different Climates of Turkey, Renewable Energy, Vol. 75, pp. 144-151, 2015. 10.1016/j.renene.2014.09.039
25
Moreno-Tejera, S., Silva-Perez, M. A., Lillo-Bravo, I., and Ramírez-Santigosa, L., Solar Resource Assessment in Seville, Spain, Statistical Characterisation of Solar Radiation at Different Time Resolutions, Sol. Energy, Vol. 132, 430e441, 2016. https:// doi.org/10.1016/j.solener.2016.03.032. 10.1016/j.solener.2016.03.032
26
Kim, C. K., Kim, H. G., Kang, Y. H., Yun, C. Y., and Lee, Y. G., Intercomparison of Satellite-Derived Solar Irradiance from the GEO-KOMSAT-2A and HIMAWARI-8/9 Satellites by the Evaluation with Ground Observations, Remote Sensing, Vol. 12, No. 13, p. 2149, 2020. 10.3390/rs12132149
27
Carigiet, F., Baumgartner, F., Sutterlueti, J., Allet, N., Pezzotti, M., and Haller, J., October. Verification of measured PV Energy Yield Versus Forecast and Loss Analysis, In 28th European PV Solar Energy Conference, 2013.
28
Kariuki, B. W. and Sato, T., Interannual and Spatial Variability of Solar Radiation Energy Potential in Kenya Using Meteosat Satellite, Renewable energy, Vol. 116, pp. 88-96, 2018. 10.1016/j.renene.2017.09.069
29
Copper, J. K. and Bruce, A. G., Interannual Variability of the Solar Resource Across Australia, In Proceedings of the Asia Pacific Solar Research Conference, Melbourne, Australia, pp. 5-7, December 2017.
30
Realpe, A., Vernav, C., Pitaval, S., Lenoir, C., and Blanc, P., Benchmarking of Five Typical Meteorological Year Dataset Dedicated to Concentrated-PV Systems, Energy Procedia, Vol. 97, pp. 108-115, 2016. 10.1016/j.egypro.2016.10.031
31
Abreu, E. F., Canhoto, P., Prior, V., and Velicio, R., Solar Resource Assessment through Long-term Statistical Analysis and Typical Data Generation with Different Time Resolutions Using GHI Measurements, Renewable Energy, Vol. 127, pp. 398-411, 2018. 10.1016/j.renene.2018.04.068
32
Jiang, Y., Generation of Typical Meteorological Year for Different Climates of China, Energy, Vol. 35, No. 5, pp. 1946-1953, 2010. 10.1016/j.energy.2010.01.009
Information
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 40
  • No :6
  • Pages :135-149
  • Received Date : 2020-12-06
  • Revised Date : 2020-12-03
  • Accepted Date : 2020-12-03