All Issue

2019 Vol.39, Issue 4 Preview Page

August 2019. pp. 41-54
Abstract


References
1 

Kim, S. J., Kim, S. W., and Yoon, Y. T., Master Optimization Process Based on Neural Net Works Ensemble for 24-h Solar Irradiance Forecast, Conference of Information and Control Systems, pp. 209-211, 2017.

2 

Kim, M. J., Lee, D. K., and Kim, G. S., Analysis to reduce PV Generation Output Variation using Energy Storage System, Power Electronics Conference, pp. 113-114, 2013.

3 

Moon, S. I., Economic Assessment of Grid-Connected Energy Storage System, Journal of Electrical World Monthly Magazine, pp. 44-48, 2013.

4 

Park, C. K. and Kim, Y. S., Feasibility Study of P2P Power Trading in Korea, Korea Energy Economics Institute, Research Report 15-10, pp. 1-85, 2016

5 

Spot, E. P. E. X., EPEX Spot. EPEX Spot, Paris, France, accessed Dec, 18, 2017.

6 

Cornaro, C., Pierro, M., and Bucci, F., Master Optimization Process Based on Neural Net Works Ensemble for 24-h Solar Irradiance Forecast, Solar Energy, Vol. 111, pp. 297-312, 2015.

10.1016/j.solener.2014.10.036
7 

Amrouche, B. and Le Pivert, X., Artificial Neural Network Based Daily Local Forecasting for Global Solar Radiation, Applied Energy, Vol. 130, pp. 333-341, 2014.

10.1016/j.apenergy.2014.05.055
8 

Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petković, D., and Sudheer, C., A Support Vector Machine-firefly Algorithm-based Model for Global Solar Radiation Prediction, Solar Energy, Vol. 115, pp. 632-644, 2015.

10.1016/j.solener.2015.03.015
9 

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M., Time Series Analysis: Forecasting and Control, John Wiley & Sons, 2015.

10 

Diagne, M., David, M., Lauret, P., Boland, J., and Schmutz, N., Review of Solar Irradiance Forecasting Methods and A Proposition for Small-scale Insular Grids, Renewable and Sustainable Energy Reviews, Vol. 27, pp. 65-76, 2013.

10.1016/j.rser.2013.06.042
11 

Monteiro, C., Santos, T., Fernandez-Jimenez, L. A., Ramirez-Rosado, I. J., and Terreros-Olarte, M. S., Short-term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity, Energies, Vol. 6, pp. 2624-2643, 2013.

10.3390/en6052624
12 

Tuohy, A., Zack, J., Haupt, S. E., Sharp, J., Ahlstrom, M., Dise, S., Grimit, E., Mohrlen, M., Lange, M., Casado, M. G., Black, J., Marquis, M., and Collier, C., Solar Forecasting: Methods, Challenges, and Performance, IEEE Power and Energy Magazine, Vol. 13, pp. 50-59, 2015.

10.1109/MPE.2015.2461351
13 

Ren, Y., Suganthan, P., and Srikanth, N., Ensemble Methods for Wind and Solar Power Forecasting-a State-of-the-art Review, Renewable and Sustainable Energy Reviews, Vol. 50, pp. 82-91, 2015.

10.1016/j.rser.2015.04.081
14 

Azimi, R., Ghayekhloo, M., and Ghofrani, M., A Hybrid Method Based on A New Clustering Technique and Multilayer Perceptron Neural Networks for Hourly Solar Radiation Forecasting, Energy Conversion and Management, Vol. 118, pp. 331-344, 2016.

10.1016/j.enconman.2016.04.009
15 

Sharma, V., Yang, D., Walsh, W., and Reindl, T., Short Term Solar Irradiance Forecasting Using a Mixed Wavelet Neural Network, Renewable Energy, Vol. 90, pp. 481-492, 2016.

10.1016/j.renene.2016.01.020
16 

Alonso-Montesinos, J., Batlles, F. J., and Portillo, C., Solar Irradiance Forecasting at One-minute Intervals for Different sky Conditions Using sky Camera Images, Energy Conversion and Management, Vol. 105, pp. 1166-1177, 2015.

10.1016/j.enconman.2015.09.001
17 

Aguiar, L. M., Pereira, B., David, M., Díaz, F., and Lauret, P. Use of Satellite Data to Improve Solar Radiation Forecasting with Bayesian Artificial Neural Networks, Solar Energy, Vol. 122, pp. 1309-1324, 2015.

10.1016/j.solener.2015.10.041
18 

Notton, G., Voyant, C., Fouilloy, A., Duchaud, J. L., and Nivet, M. L. Some Applications of ANN to Solar Radiation Estimation and Forecasting for Energy Applications, Applied Sciences, Vol. 9, No. 1, p. 209, 2019.

10.3390/app9010209
19 

Gutierrez-Corea, F. V., Manso-Callejo, M. A., Moreno-Regidor, M. P., and Manrique-Sancho, M. T. Forecasting Short-term Solar Irradiance Based on Artificial Neural Networks and Data From Neighboring Meteorological Stations, Solar Energy, Vol. 134, pp. 119-131, 2016.

10.1016/j.solener.2016.04.020
20 

Dong, Z., Yang, D., Reindl, T., and Walsh, W. M. A Novel Hybrid Approach Based on Self-organizing Maps, Support Vector Regression and Particle Swarm Optimization to Forecast Solar Irradiance, Energy, Vol. 82, pp. 570-577, 2015.

10.1016/j.energy.2015.01.066
21 

de Paiva, G. M., Pimentel, S. P., Leva, S., and Mussetta, M. Intelligent Approach to Improve Genetic Programming Based Intra-Day Solar Forecasting Models, In 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8. IEEE, 2018.

10.1109/CEC.2018.8477845
22 

Trapero, J. R., Kourentzes, N., and Martin, A. Short-term Solar Irradiation Forecasting Based on Dynamic Harmonic Regression, Energy, Vol. 84, 289-295, 2015.

10.1016/j.energy.2015.02.100
23 

Di Piazza, A., Di Piazza, M. C., and Vitale, G. Solar and Wind Forecasting by NARX Neural Networks, Renewable Energy and Environmental Sustainability, Vol. 1, p. 39, 2016.

10.1051/rees/2016047
24 

Lima, F. J., Martins, F. R., Pereira, E. B., Lorenz, E., and Heinemann, D. Forecast for Surface Solar Irradiance at the Brazilian Nrtheastern Region Using NWP Model and Artificial Neural Networks, Renewable Energy, Vol. 87, pp. 807-818, 2016.

10.1016/j.renene.2015.11.005
25 

Agoua, X. G., Girard, R., and Kariniotakis, G. Short-term Spatio-temporal Forecasting of Photovoltaic Power Production, IEEE Transactions on Sustainable Energy, Vol. 9, No. 2, pp. 538-546, 2017.

10.1109/TSTE.2017.2747765
26 

De Giorgi, M. G., Congedo, P. M., and Malvoni, M. Photovoltaic Power Forecasting Using Statistical Methods: Impact of Weather Data, IET Science, Measurement & Technology, Vol. 8, No. 3, pp. 90-97, 2014.

10.1049/iet-smt.2013.0135
27 

Bouzerdoum, M., Mellit, A., and Pavan, A. M. A Hybrid Model (SARIMA-SVM) for Short-term Power Forecasting of a Small-scale Grid-connected Photovoltaic Plant, Solar Energy, Vol. 98, pp. 226-235, 2013.

10.1016/j.solener.2013.10.002
28 

Gandelli, A., Grimaccia, F., Leva, S., Mussetta, M., and Ogliari, E. Hybrid Model Analysis and Validation for PV Energy Production Forecasting, In 2014 International Joint Conference on Neural Networks (IJCNN), pp. 1957-1962. IEEE, July, 2014.

10.1109/IJCNN.2014.6889786
29 

Antonanzas, J., Urraca, R., Aldama, A., Fernández-Jiménez, L. A., and Martínez-de-Pisón, F. J., Single and Blended Models for Day-Ahead Photovoltaic Power Forecasting, In International Conference on Hybrid Artificial Intelligence Systems, pp. 427-434, Springer, Cham., June, 2017.

10.1007/978-3-319-59650-1_36
Information
  • Publisher :Korean Solar Energy Society
  • Publisher(Ko) :한국태양에너지학회
  • Journal Title :Journal of the Korean Solar Energy Society
  • Journal Title(Ko) :한국태양에너지학회 논문집
  • Volume : 39
  • No :4
  • Pages :41-54